
Hi everyone, my name is Michal Iwanicki.
LΩƳ here today with with Peter-Pike Sloan ŀƴŘ LΩƳ ƎƻƛƴƎ ǘƻ ǘŀƭƪ ŀōƻǳǘ ŀ family of new
spherical basis function that we call Ambient Dice (AD).

1

Something that I really want to cover today is not only the details of the research
itself, but also what were the motivations for certain choices that we made, what
were the constraints on our solution.
Because we work in games, we work for Activision Central Tech, doing R&D for
various studios, most notably for the Call Of Duty franchise.
And ŜǾŜƴ ǘƘƻǳƎƘ ƛǘ ƛǎ άwϧ5έ ƛǘΩǎ Ƴƻǎǘƭȅ ŘǊƛǾŜƴ ōȅ ǘƘŜ ά5ά ǇŀǊǘ ς which means that
ǿŜΩǊŜ ŘƻƛƴƎ ǘƘŜ ǊŜǎŜŀǊŎƘ ŦƻǊ ŀ ǇŀǊǘƛŎǳƭŀǊ ǘƛǘƭŜΣ ƛǘ ƴŜŜŘǎ ǘƻ ōŜ ǊŜŀŘȅ ƻƴ ǘƛƳŜΣ ǿŜ ŀǊŜ
actually responsible for putting it in the final game, and it needs to run within a very
strict performance and memory constraints

2

Mƻǎǘ ǊŜŎŜƴǘƭȅ ǿŜΩǾŜ ōŜŜƴ working on lighting, so I will give you a brief introduction to
lighting in games.
Traditionally, game lighting is separated into two parts that are handled separately.
First, there is direct lighting, with contributions from traditional point, spot, and
recently area lights, which are often shadowed with some form of shadowmaps.
Then there is the indirect lighting, which is different in that it usually involves some
sort of precomputations, storing the results in some data structures, and then
resampling the results during the actual rendering.
LǘΩǎ ƎŜƴŜǊŀƭƭȅ ŎƻƳǇǳǘŜŘ ŀǘ ŀ ǎǇŀǘƛŀƭ ŦǊŜǉǳŜƴŎȅ ǘƘŀǘΩǎ ǳƴǊŜƭŀǘŜŘ ǘƻ the actual final
rendered image.
The indirect lighting data usually comes in two flavors: there are hemispherical signals
that describe lighting on surfaces, and fully spherical signals for describing lighting in
space.
We often use different methods for representing the two.

3

WŜΩƭƭ focus on indirect lighting here. To be even more precise, we will focus on the
diffuse contribution and how it is stored and represented, and we want it to
represent a full spherical signal.
There are a number of solutions used in games.
I ŘƻƴΩǘ ǊŜŀƭƭȅ ǘƘƛƴƪ ǿŜ Ŏŀƴ ǎŀȅ ǘƘŀǘ ǘƘƛǎ ƛǎ ŀŎǘǳŀƭƭȅ ŀ ǎƻƭǾŜŘ problem.
The solutions range from constant ambient which looks bad, to a combination of
ambient and diffuse light.
The latter does a reasonable job when used to represent hemispherical signal, but
fails miserably when representing spherical signal, generating those pee-stain like
artifacts when the direction of the light changes rapidly.
Then there are low order spherical harmonics (SH): second and third order.
The problem with the second is that the quality is not really enough, and the third
order is slightly too expensive.
Recently, people have also been using sets of spherical Gaussian (SG) lobes, which are
fairly expensive, but have the advantage in that they can do a reasonable job
representing radiance for low gloss specular materials.
And ǘƘŜƴ ǘƘŜǊŜΩǎ !ƳōƛŜƴǘ Cube (AC), which is a set of 6 clamped cos^2 lobes oriented
along cardinal axes.
The quality they offer is fairly low, but it is really cheap.

4

5

6

7

8

We need something that is really, really cheap.
Most of our games need to run at 60Hz, which means we have ~16.6 ms to render a
whole frame.
This gives us around 7-8ms to do the actual scene rendering.
The rest is spent on shadows, special effects, etc.
At the same time, we dont want to compromise quality.
For instance, we want the lighting on objects to change spatially.
Bǳǘ ǎƛƴŎŜ ƛǘΩǎ ƻƴƭȅ ƛƴŘƛǊŜŎǘ ƭƛƎƘǘƛƴg, we dont really need it to change at very high rate.
A single sample every meter is roughly the density that we are aiming for.
This means that when rendering objects we will need to use some sort of volumetric
structure to store the lighting.
Neighboring pixels will use mostly the same pieces of that structure.
They will be accessing lighting data from roughly the same areas of memory.
The traffic between memory and L2 cache will be relatively small.
But on the other hand, it *will* be different for every pixel.
Every pixel *will* need to use slightly different data, and one of the main goals for us
was to limit that amount of data.

9

Why? Because accessing memory from a shader is really costly in terms of the
resources it needs.
The diagram here shows a simplified view of a compute unit on both of the current
generation consoles.
To access memory we need to allocate some registers to store the results.
It needs to send the actual fetch request to the texture unit, where it takes some
amount of space in the internal queues.
Then there is the bandwidth utilization between the compute unit and L2.
Our main problem is that even without doing anything, just by using constant
ambient, all the other features that we have in the shader cause us to be limited by
the register counts that we use.
WŜΩǊŜ almost limited by the queues in the texture units, and while we have some
slack in the available bandwidth, we really want to avoid adding too many memory
access requests.
All these factors are in a delicate balance: you can use more registers, but then you
limit the number of shader instances you can have in flight.
This, in turn, limits their ability to hide the memory lookup latency, etc.
16KB of L1 / ((avg) 4 wavefronts/SIMD * 4 SIMDs/CU * (avg) 4 lookups in flight * 64
bytes/cache line Ґ плфсōȅǘŜǎ ύ Ґ пΣ ǎƻ ǘƘŜǊŜΩǎ ǊƻƻƳ ǘƻ ƘƻƭŘ п cache-lines per

10

wavefront per lookup.
There are 64 threads in each wavefront, each thread performing lookups from
independent positions in textures.
Lookup positions are usually close within a wavefront, so it might not require all four
cache lines, but ǘƘŜǊŜΩǎ also not really a lot of temporal reuse.
Mostly there is spatial reuse, with the L1<->L2 path constantly busy.

10

11

